已知抛物线C的顶点在原点,焦点为F(2,0).
(1)求抛物线C的方程;
(2)过N(-1,0)的直线l交曲C于A,B两点,又AB的中垂线交y轴于点D(0,t),求t的取值范围.
考点分析:
相关试题推荐
已知曲线C的方程y
2=3x
2-2x
3,设y=tx,t为参数,求曲线C的参数方程.
查看答案
“抽卡有奖游戏”的游戏规则是:盒子中装有8张形状大小相同的精美卡片,卡片上分别印有“奥运福娃”或“奥运会徽”,要求参加游戏的4人从盒子中轮流抽取卡片,一次抽2张,抽取后不放回,直到4人中一人一次抽到2张“奥运福娃”卡才能得到奖并终止游戏.
(1)游戏开始之前,一位高中生问:盒子中有几张“奥运会徽”卡?主持人说:若从盒中任抽2张卡片不都是“奥运会徽”卡的概率为
.请你回答有几张“奥运会徽”卡呢?
(2)现有甲、乙、丙、丁4人参加游戏,约定甲、乙、丙、丁依次抽取.用ξ表示4人中的某人获奖终止游戏时总共抽取卡片的次数,求ξ的概率分布及ξ的数学期望.
查看答案
已知
的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)求展开式中系数最大的项.
查看答案
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log
2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=log
ax( a>1)与y=x的图象有公共点,证明f(x)=log
ax∈M.
查看答案
设数列{a
n}的前n项和为S
n,且满足S
n=2-a
n,n=1,2,3,….
(1)求数列{a
n}的通项公式;
(2)若数列{b
n}满足b
1=1,且b
n+1=b
n+a
n,求数列{b
n}的通项公式;
(3)设c
n=n (3-b
n),求数列{c
n}的前n项和为T
n.
查看答案