满分5 > 高中数学试题 >

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,...

manfen5.com 满分网如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若manfen5.com 满分网,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可. (Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P-ABCD的体积. 【解析】 (1)因为PH是四棱锥P-ABCD的高. 所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H. 所以AC⊥平面PBD. 故平面PAC⊥平面PBD(6分) (2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=. 所以HA=HB=. 因为∠APB=∠ADB=60° 所以PA=PB=,HD=HC=1. 可得PH=. 等腰梯形ABCD的面积为S=ACxBD=2+(9分) 所以四棱锥的体积为V=×(2+)×=.(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,x∈R,将函数f(x)向左平移manfen5.com 满分网个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若manfen5.com 满分网,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
给出下列命题中
①向量manfen5.com 满分网满足manfen5.com 满分网,则manfen5.com 满分网的夹角为30
manfen5.com 满分网manfen5.com 满分网>0,是manfen5.com 满分网的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量manfen5.com 满分网=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若(manfen5.com 满分网+manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=0,则△ABC为等腰三角形;
以上命题正确的是    (注:把你认为正确的命题的序号都填上) 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,若B=60°,且manfen5.com 满分网,则cosC的值为    查看答案
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.则棱锥F-OBED的体积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.