满分5 > 高中数学试题 >

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为,直线...

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为manfen5.com 满分网,直线l与y轴交于点P(0,m),与椭圆C交于相异两点Amanfen5.com 满分网
(1)求椭圆方程;
(2)若manfen5.com 满分网的取值范围。.
(1)利用待定系数法求椭圆的方程,设出椭圆C的标准方程,依条件得出a,b的方程,求出a,b即得椭圆C的方程. (2)先设l与椭圆C交点为A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量条件即可求得m的取值范围,从而解决问题. 【解析】 (1)设椭圆C的方程:,则c2=a2-b2,, 故椭圆C的方程为y2+2x2=1.(4分) (2)由, ∴. ∵, ∴λ+1=4,λ=3. 设l与椭圆C交点为A(x1,y1),B(x2,y2), 得(k2+2)x2+2kmx+(m2-1)=0, 因此△=(2km)2-4(k2+2)(m2-1) =4(k2-2m2+2)>0,① 则x1+x2=. ∵,∴-x1=3x2,得 得3(x1+x2)2+4x1x2=0, ∴, 整理得:4k2m2+2m2-k2-2=0. 当时,上式不成立. ∴. 由①式得k2>2m2-2, ∵λ=3,∴k≠0,, 所以或. 即所求m的取值范围为(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中x∈R,θ为参数,且0≤θ≤2π.
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
查看答案
manfen5.com 满分网如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)若manfen5.com 满分网,∠APB=∠ADB=60°,求四棱锥P-ABCD的体积.
查看答案
已知函数manfen5.com 满分网,x∈R,将函数f(x)向左平移manfen5.com 满分网个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若manfen5.com 满分网,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的取值范围.
查看答案
已知函数f(x)=sin(ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
给出下列命题中
①向量manfen5.com 满分网满足manfen5.com 满分网,则manfen5.com 满分网的夹角为30
manfen5.com 满分网manfen5.com 满分网>0,是manfen5.com 满分网的夹角为锐角的充要条件;
③将函数y=|x-1|的图象按向量manfen5.com 满分网=(-1,0)平移,得到的图象对应的函数表达式为y=|x|;
④若(manfen5.com 满分网+manfen5.com 满分网)•(manfen5.com 满分网-manfen5.com 满分网)=0,则△ABC为等腰三角形;
以上命题正确的是    (注:把你认为正确的命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.