满分5 > 高中数学试题 >

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,...

在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.
(1)求证:PC⊥AE;
(2)求证:CE∥平面PAB;
(3)求三棱锥P-ACE的体积V.

manfen5.com 满分网
(1)取PC中点F,利用等腰三角形的性质可得PC⊥AF,先证明CD⊥平面PAC,可得CD⊥PC,从而EF⊥PC,故有PC⊥平面AEF,进而证得PC⊥AE. (2)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB. (3)由(1)知AC=2,EF=CD,且EF⊥平面PAC,求得EF 的值,代入V=进行运算. 【解析】 (1)在Rt△ABC中,AB=1,∠BAC=60°, ∴BC=,AC=2.取PC中点F,连AF,EF, ∵PA=AC=2,∴PC⊥AF. ∵PA⊥平面ABCD,CD⊂平面ABCD, ∴PA⊥CD,又∠ACD=90°,即CD⊥AC, ∴CD⊥平面PAC,∴CD⊥PC, ∴EF⊥PC,∴PC⊥平面AEF,∴PC⊥AE. (2)证明:取AD中点M,连EM,CM.则 EM∥PA.∵EM⊄平面PAB,PA⊂平面PAB, ∴EM∥平面PAB. 在Rt△ACD中,∠CAD=60°,AC=AM=2, ∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB. ∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC⊂平面EMC,∴EC∥平面PAB. (3)由(1)知AC=2,EF=CD,且EF⊥平面PAC.在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=. 则V=.
复制答案
考点分析:
相关试题推荐
已知锐角△ABC中的三个内角分别为A,B,C.
(1)设manfen5.com 满分网,求证△ABC是等腰三角形;
(2)设向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
已知定义在R上的函数f(x)和g(x)满足g(x)≠0,f′(x)•g(x)<f(x)•g′(x),f(x)=ax•g(x),manfen5.com 满分网.令manfen5.com 满分网,则使数列{an}的前n项和Sn超过manfen5.com 满分网的最小自然数n的值为    查看答案
在△ABC中,已知内角manfen5.com 满分网,边manfen5.com 满分网,则△ABC的面积S的最大值为    查看答案
已知函数f(x)=-xlnx+ax在(0,e)上是增函数,函数manfen5.com 满分网.当x∈[0,ln3]时,函数g(x)的最大值M与最小值m的差为manfen5.com 满分网,则a=    查看答案
设A和B是抛物线上的两个动点,且在A和B处的抛物线切线相互垂直,已知由A、B及抛物线的顶点所成的三角形重心的轨迹也是一抛物线,记为L1.对L1重复以上过程,又得一抛物线L2,余类推.设如此得到抛物线的序列为L1,L2,…,Ln,若抛物线的方程为y2=6x,经专家计算得,L1:y2=2(x-1),manfen5.com 满分网manfen5.com 满分网,…,manfen5.com 满分网.   则2Tn-3Sn=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.