满分5 > 高中数学试题 >

某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频...

某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(I)估计这次测试数学成绩的平均分;
(II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为ξ,求ξ的分布列及数学期望Eξ.

manfen5.com 满分网
(I)利用分组两端的数据中值估算抽样学生的平均分,类似于加权平均数的算法,让每一段的中值乘以这一段对应的频率,得到平均数,利用样本的平均数来估计总体的平均数. (II)根据等可能事件的概率公式得到两个数恰好是两个学生的数学成绩的概率,随机变量ξ的可能取值为0、1、2、3,且变量符合二项分布,根据符合二项分布写出分布列和期望,也可以用一般求期望的方法来解. 【解析】 (I)利用中值估算抽样学生的平均分: 45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72. ∴估计这次考试的平均分是72分. (II)从95,96,97,98,99,100中抽2个数的全部可能的基本结果数是C62=15, 有15种结果,学生的成绩在[90,100]段的人数是0.005×10×80=4(人), 这两个数恰好是两个学生的数学成绩的基本结果数是C42=6, 两个数恰好是两个学生的数学成绩的概率 随机变量ξ的可能取值为0、1、2、3,且变量符合二项分布, ∴ ∴变量ξ的分布列为: ∴ (或Eξ=)
复制答案
考点分析:
相关试题推荐
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,AB=2,P为线段AB上的动点.
(I)求证:CA1⊥C1P;
(II)若四面体P-AB1C1的体积为manfen5.com 满分网,求二面角C1-PB1-A1的余弦值.

manfen5.com 满分网 查看答案
已知△ABC的内角A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(I)若a=7,△ABC的面积manfen5.com 满分网,求b、c的值;
(II)若manfen5.com 满分网manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
函数f(x)=x-2+log2(a-2x)存在零点,则实数a的取值范围是     查看答案
抛物线x2=4y准线上任一点R作抛物线的两条切线,切点分别为M、N,若O是坐标原点,则manfen5.com 满分网=    查看答案
manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.