满分5 > 高中数学试题 >

在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM.若侧棱,则...

在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且MN⊥AM.若侧棱manfen5.com 满分网,则正三棱锥S-ABC外接球的表面积是
( )
A.12π
B.32π
C.36π
D.48π
由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积. 【解析】 ∵三棱锥S-ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC 又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC ∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球 ∴2R=2,∴R=3,∴S=4πR2=4π•(3)2=36π, 故选C.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是( )
A.(0,2)
B.(0,8)
C.(2,8)
D.(-∞,0)
查看答案
若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
数列{an}满足a1=1,a2=2,manfen5.com 满分网,则a13等于( )
A.26
B.24
C.212×12!
D.213×13!
查看答案
在三角形中,对任意λ都有manfen5.com 满分网,则△ABC形状( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
查看答案
已知a,b∈R+,那么“a2+b2<1”是“ab+1>a+b”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.