满分5 > 高中数学试题 >

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈...

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2pan2+pan-p(p∈R)
(1)求常数p的值;
(2)求数列{an}的通项公式;
(3)记bn=manfen5.com 满分网,求数列{bn}的前n项和T.
(1)根据a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p,令n=1,解方程即可求得结果; (2)由2Sn=2an2+an-1,知2Sn-1=2an-12+an-1-1,(n≥2),所以(an-an-1-1)(an+an-1)=0,由此能求出数列{an}的通项公式. (3)根据求出数列{bn}的通项公式,利用错位相减法即可求得结果. 【解析】 (1)∵a1=1,对任意的n∈N*,有2Sn=2pan2+pan-p ∴2a1=2pa12+pa1-p,即2=2p+p-p,解得p=1; (2)2Sn=2an2+an-1,① 2Sn-1=2an-12+an-1-1,(n≥2),② ①-②即得(an-an-1-)(an+an-1)=0, 因为an+an-1≠0,所以an-an-1-=0, ∴ (3)2Sn=2an2+an-1=2×, ∴Sn=, ∴=n•2n Tn=1×21+2×22+…+n•2n③ 又2Tn=1×22+2×23+…+(n-1)•2n+n2n+1 ④ ④-③Tn=-1×21-(22+23+…+2n)+n2n+1=(n-1)2n+1+2 ∴Tn=(n-1)2n+1+2
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.manfen5.com 满分网
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(3)若点E为PC的中点,求二面角D-AE-B的大小.
查看答案
manfen5.com 满分网如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.
查看答案
已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
查看答案
已知向量manfen5.com 满分网,其中x∈R,
(1)当manfen5.com 满分网时,求x值的集合;
(2)设函数manfen5.com 满分网,求f(x)的最小正周期及其单调增区间.
查看答案
manfen5.com 满分网如图是一个类似杨辉三角的递推式,则第n行的首尾两数均为    ,第n行的第2个数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.