满分5 > 高中数学试题 >

已知 f(x)=cos(-x)+sin(+x) (x∈R). (1)求函数f(x...

已知 f(x)=cos(manfen5.com 满分网-x)+manfen5.com 满分网sin(manfen5.com 满分网+x) (x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并指出此时x的值.
(1)利用诱导公式化简函数的表达式,通过两角和的正弦函数化为一个角的一个三角函数的形式,求出周期. (2)通过(1)得到的函数表达式,利用正弦函数的最值,求出函数的最大值以及此时x的值. 【解析】 (1)∵f(x)=cos(-x)+sin(+x) =sinx+cosx =2 =2(sinxcos+sincosx) =2sin(x+) ∴T=2π (2)当sin(x+)=1时, 函数f(x)取最大值为:2 此时x+=   k∈Z即:x=2kπ  (k∈Z)
复制答案
考点分析:
相关试题推荐
方程x2+manfen5.com 满分网-1=0的解可视为函数y=x+manfen5.com 满分网的图象与函数y=manfen5.com 满分网的图象交点的横坐标.若x4+ax-9=0的各个实根x1,x2,…,xk(k≤4)所对应的点manfen5.com 满分网(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是    查看答案
等差数列{an}的公差为d,关于x的不等式manfen5.com 满分网+manfen5.com 满分网+c≥0的解集为[0,22],则使数列{an}的前n项和Sn最大的正整数n的值是    查看答案
设周期函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且满足f(1)>-2,f(2)=m-manfen5.com 满分网,则m的取值范围是    查看答案
manfen5.com 满分网为坐标原点,动点p(x,y)满足manfen5.com 满分网,则z=y-x的最小值是    查看答案
某同学在借助题设给出的数据求方程lgx=2-x的近似数(精确到0.1)时,设f(x)=lgx+x-2,得出f(1)<0,且f(2)>0,他用“二分法”取到了4个x的值,计算其函数值的正负,并得出判断:方程的近似解为x≈1.8,那么他所取的4个值中的第二个值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.