满分5 > 高中数学试题 >

设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(...

设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.
(1)当p=q=manfen5.com 满分网时,求数学期望E(ξ)及方差V(ξ);
(2)当p+q=1时,将ξ的数学期望E(ξ)用p表示.
(1)每位投球手均独立投球一次,每次试验事件发生的概率相等,判断符合二项分布,由二项分布的期望和方差公式进行求解即可; (2)由题意知每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.因为三个人投球得到最多投入3个,最少0个,得到变量的可能取值,根据相互独立事件和互斥事件的公式得到概率,从而得到分布列,最后根据数学期望公式解之即可. 【解析】 (1)∵每位投球手均独立投球一次, 当p=q=时,每次试验事件发生的概率相等, ∴ξ~B(3,),由二项分布的期望和方差公式得到结果 ∴Eξ=np=3×=,Dξ=np(1-p)=3×= (2)ξ的可取值为0,1,2,3. P(ξ=0)=(1-q)(1-p)2=pq2; P(ξ=1)=q(1-p)2+(1-q)C21p(1-p)=q3+2p2q; P(ξ=2)=qC21p(1-p)+(1-q)p2=2pq2+p3; P(ξ=3)=qp2. ξ的分布列为 ξ 1 2 3 P pq2 q3+2p2q 2pq2+p3 qp2 Eξ=0×pq2+1×(q3+2p2q)+2×(2pq2+p3)+3×qp2=1+p.
复制答案
考点分析:
相关试题推荐
直线manfen5.com 满分网和曲线manfen5.com 满分网相交于A、B两点.求线段AB的长.
查看答案
四边形ABCD和四边形A'B'C'D'分别是矩形和平行四边形,其中点的坐标分别为A(-1,2),B(3,2),C(3,-2),D(-1,-2),A'(-1,0),B'(3,8),C'(3,4),D'(-1,-4).求将四边形ABCD变成四边形A'B'C'D'的变换矩阵M.

manfen5.com 满分网 查看答案
设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.
查看答案
设f(x)是定义在[a,b]上的函数,用分点T:a=x<x1<…<xi-1<xi<…xn=b将区间[a,b]任意划分成n个小区间,如果存在一个常数M>0,使得和manfen5.com 满分网≤M(i=1,2,…,n)恒成立,则称f(x)为[a,b]上的有界变差函数.
(1)函数f(x)=x2在[0,1]上是否为有界变差函数?请说明理由;
(2)设函数f(x)是[a,b]上的单调递减函数,证明:f(x)为[a,b]上的有界变差函数;
(3)若定义在[a,b]上的函数f(x)满足:存在常数k,使得对于任意的x1、x2∈[a,b]时,|f(x1)-f(x2)|≤k•|x1-x2|.证明:f(x)为[a,b]上的有界变差函数.
查看答案
已知△ABC的边AB边所在直线的方程为x-3y-6=0,M(2,0)满足manfen5.com 满分网,点T(-1,1)在AC边所在直线上且满足manfen5.com 满分网
(1)求AC边所在直线的方程;
(2)求△ABC外接圆的方程;
(3)若动圆P过点N(-2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.