满分5 > 高中数学试题 >

已知关于x的一元二次函数f(x)=ax2-4bx+1. (1)设集合P={1,2...

已知关于x的一元二次函数f(x)=ax2-4bx+1.
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(2)设点(a,b)是区域manfen5.com 满分网内的随机点,记A={y=f(x)有两个零点,其中一个大于1,另一个小于1},求事件A发生的概率.
(1)确定基本事件总数,求出函数y=f(x)在区间[1,+∞)上是增函数对应的事件数,利用古典概型概率的计算公式,即可得到结论; (2)以面积为测度,计算试验的全部结果所构成的区域的面积及事件A构成的区域的面积,利用公式可得结论. 【解析】 (1)∵函数f(x)=ax2-4bx+1的图象的对称轴为, 要使f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且…(2分) 若a=1则b=-1,若a=2则b=-1,1若a=3则b=-1,1…(4分) 记B={函数y=f(x)在区间[1,+∞)上是增函数},则事件B包含基本事件的个数是1+2+2=5, ∴…(6分) (2)依条件可知试验的全部结果所构成的区域为, 其面积…(8分) 事件A构成的区域: 由,得交点坐标为,…(10分) ∴, ∴事件A发生的概率为…(12分)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网(ω>0),函数manfen5.com 满分网的最小正周期为π.
(I)求函数f(x)的单调增区间;
(II)如果△ABC的三边a、b、c所对的角分别为A、B、C,且满足manfen5.com 满分网,求f(A)的值.
查看答案
观察下列等式:
1=1                         13=1
1+2=3                       13+23=9
1+2+3=6                     13+23+33=36
1+2+3+4=10                  13+23+33+43=100
1+2+3+4+5=15                13+23+33+43+53=225

可以推测:13+23+33+…+n3=    .(n∈N*,用含有n的代数式表示) 查看答案
若点P在直线l1:x+y+3=0上,过点P的直线l2与曲线C:(x-5)2+y2=16只有一个公共点M,则|PM|的最小值为    查看答案
阅读如图所示程序框图,为使输出的数据为31,则判断框中应填的是   
manfen5.com 满分网 查看答案
设f(x)=ax-b,其中a,b为实数,f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f7(x)=128x+381,则a+b=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.