满分5 > 高中数学试题 >

已知在△ABC中,,a,b,c分别是角A,B,C所对的边. (1)求tan2A;...

已知在△ABC中,manfen5.com 满分网,a,b,c分别是角A,B,C所对的边.
(1)求tan2A;
(2)若manfen5.com 满分网,求△ABC的面积.
(1)先利用同角三角函数基本关系求得sinA,进而求得tanA,进而利用正切的二倍角公式求得tan2A. (2)运用诱导公式求得cosB,进而利用同角三角函数基本关系求得sinB的值,根据两角和公式求得sin(A+B)的值,进而求得sinC,再由正弦定理求得a,最后根据三角形面积公式求得答案. 【解析】 (1)因为 所以,则. 所以. (2)由, 得,所以 则. 由正弦定得,得, 所以△ABC的面积为.
复制答案
考点分析:
相关试题推荐
若关于x的不等式x2<2-|x-a|至少有一个负数解,则实数a的取值范围是    查看答案
manfen5.com 满分网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(manfen5.com 满分网,x,y),且manfen5.com 满分网≥8恒成立,则正实数a的最小值为    查看答案
设A,F分别是椭圆manfen5.com 满分网的左顶点与右焦点,若在其右准线上存在点P,使得线段PA的垂直平分线恰好经过点F,则椭圆的离心率的取值范围是    查看答案
下列命题:
①命题“∃x∈R,x2+x+1=0”的否定是“∃x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},则A∩(CRB)=A;
③函数f(x)=sin(ωx+φ)(ω>0)是偶函数的充要条件是φ=kπ+manfen5.com 满分网(k∈Z);
④若非零向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网=λ•manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(λ∈R),则λ=1.
其中正确命题的序号有    查看答案
在平面直角坐标平面内,不难得到“对于双曲线xy=k(k>0)上任意一点P,若点P在x轴、y轴上的射影分别为M、N,则|PM|•|PN|必为定值k”、类比于此,对于双曲线manfen5.com 满分网(a>0,b>0)上任意一点P,类似的命题为:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.