满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面AB...

manfen5.com 满分网如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.
(Ⅰ)若CD∥平面PBO,试指出点O的位置;
(Ⅱ)求证:平面PAB⊥平面PCD.
(Ⅰ)CD∥平面PBO,推出BO∥CD得到AD=3BC,点O的位置满足AO=2OD. (Ⅱ)要证平面AB⊥平面PCD,只需证明平面PCD内的直线PD,垂直平面PABPD内的两条相交直线AB、PA即可. (Ⅰ)【解析】 因为CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO, 所以 BO∥CD又 BC∥AD, 所以四边形BCDO为平行四边形,则BC=DO, 而AD=3BC, 故点O的位置满足AO=2OD. (Ⅱ)证:因为侧面PAD⊥底面ABCD,AB⊂底面ABCD,且AB⊥交线AD, 所以AB⊥平面PAD,则AB⊥PD又PA⊥PD, 且PA⊂平面PAB,AB⊂平面PAB,AB∩PA=A, 所以PD⊥平面PAB,PD⊂平面PCD, 所以:平面PAB⊥平面PCD.
复制答案
考点分析:
相关试题推荐
已知在△ABC中,manfen5.com 满分网,a,b,c分别是角A,B,C所对的边.
(1)求tan2A;
(2)若manfen5.com 满分网,求△ABC的面积.
查看答案
若关于x的不等式x2<2-|x-a|至少有一个负数解,则实数a的取值范围是    查看答案
manfen5.com 满分网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(manfen5.com 满分网,x,y),且manfen5.com 满分网≥8恒成立,则正实数a的最小值为    查看答案
设A,F分别是椭圆manfen5.com 满分网的左顶点与右焦点,若在其右准线上存在点P,使得线段PA的垂直平分线恰好经过点F,则椭圆的离心率的取值范围是    查看答案
下列命题:
①命题“∃x∈R,x2+x+1=0”的否定是“∃x∈R,x2+x+1≠0”;
②若A={x|x>0},B={x|x≤-1},则A∩(CRB)=A;
③函数f(x)=sin(ωx+φ)(ω>0)是偶函数的充要条件是φ=kπ+manfen5.com 满分网(k∈Z);
④若非零向量manfen5.com 满分网manfen5.com 满分网满足manfen5.com 满分网=λ•manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(λ∈R),则λ=1.
其中正确命题的序号有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.