满分5 > 高中数学试题 >

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横...

在平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的manfen5.com 满分网倍后得到点Q(x,manfen5.com 满分网y),且满足manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求动点P所在曲线C的方程;
(Ⅱ)过点B作斜率为-manfen5.com 满分网的直线l交曲线C于M、N两点,且manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网,试求△MNH的面积.
(Ⅰ)设点P的坐标为(x,y),则点Q的坐标为(x,y),表示出=(x+1,y),=(x-1,y),利用•=1,即可求得动点P所在曲线C的方程; (Ⅱ)设出l:y=-(x-1),与椭圆联立方程组,消去y,得2x2-2x-1=0,利用++=,确定H的坐标,计算|MN|,及H到直线l的距离即可求出△MNH的面积. 【解析】 (Ⅰ)设点P的坐标为(x,y),则点Q的坐标为(x,y). 依据题意,有=(x+1,y),=(x-1,y).…(2分) ∵•=1, ∴x2-1+2y2=1. ∴动点P所在曲线C的方程是+y2=1 …(4分) (Ⅱ)因直线l过点B,且斜率为k=-,故有l:y=-(x-1)…(5分) 联立方程组,消去y,得2x2-2x-1=0.…(7分) 设M(x1,y1)、N(x2,y2),可得,于是.…(8分) 又++=,得=(-x1-x2,-y1-y2),即H(-1,-)…(10分) ∴|MN|=,…(12分) 又l:x+2y-=0,则H到直线l的距离为d= 故所求△MNH的面积为S=.…(14分)
复制答案
考点分析:
相关试题推荐
定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.
查看答案
已知数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*).
(1)证明:数列manfen5.com 满分网为等差数列;
(2)求数列{an}的前n项和Sn
查看答案
某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,…,8,其中ξ≥5为标准A,ξ≥3为标准B,产品的等级系数越大表明产品的质量越好.已知某厂执行标准B生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
该行业规定产品的等级系数ξ≥7的为一等品,等级系数5≤ξ<7的为二等品,等级系数3≤ξ<5的为三等品.
(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;
(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.
查看答案
如图,在正四棱柱ABCD-A1B1C1D1中,AB=a,manfen5.com 满分网,E为CC1的中点,AC∩BD=O.
(Ⅰ) 证明:OE∥平面ABC1
(Ⅱ)证明:A1C⊥平面BDE.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.