满分5 > 高中数学试题 >

已知(x+1)n=a+a1(x-1)+a2(x-1)+a3(x-1)3+…+an...

已知(x+1)n=a+a1(x-1)+a2(x-1)+a3(x-1)3+…+an(x-1)n,(其中n∈N*
(1)求amanfen5.com 满分网
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
(1)通过x=1直接求出a,通过x=2即可求出的表达式; (2)通过比较n=1,2,3,4,5时Sn与(n-2)2n+2n2的大小,猜想出二者的大小,利用数学归纳法假设n=k时成立,证明n=k+1时猜想也成立即可. 【解析】 (1)令x=1,则a=2n,令x=2, 则,∴Sn=3n-2n;----------------------(3分) (2)要比较Sn与(n-2)2n+2n2的大小,即比较:3n与(n-1)2n+2n2的大小, 当n=1时,3n>(n-1)2n+2n2;当n=2,3时,3n<(n-1)2n+2n2; 当n=4,5时,3n>(n-1)2n+2n2;-----------------------------------(5分) 猜想:当n≥4时n≥4时,3n>(n-1)2n+2n2,下面用数学归纳法证明: 由上述过程可知,n=4n=4时结论成立, 假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n-1)2n+2n2, 两边同乘以3 得:3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2] 而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-2)2k+4(k-2)(k+1)+6>0∴3k+1>[(k+1)-1]2k+1+2(k+1)2 即n=k+1时结论也成立, ∴当n≥4时,3n>(n-1)2n+2n2成立. 综上得,当n=1时,3n>(n-1)2n+2n2; 当n=2,3时,3n<(n-1)2n+2n2;当n≥4,n∈N*时,3n>(n-1)2n+2n2--(10分)
复制答案
考点分析:
相关试题推荐
如图,在正方体ABCD-A1B1C1D1中,P是棱BC的中点,Q在棱CD上.且DQ=λDC,若二面角P-C1Q-C的余弦值为manfen5.com 满分网,求实数λ的值.

manfen5.com 满分网 查看答案
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1manfen5.com 满分网与曲线C2manfen5.com 满分网(t∈R)交于A、B两点.求证:OA⊥OB.
查看答案
已知矩阵manfen5.com 满分网,若矩阵A属于特征值3的一个特征向量为manfen5.com 满分网,属于特征值-1的一个特征向量为manfen5.com 满分网,求矩阵A.
查看答案
已知函数manfen5.com 满分网(a∈R).
(Ⅰ) 当a≥0时,讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4.当manfen5.com 满分网时,
(i)若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.
(ii) 对于任意x1,x2∈(1,2]都有manfen5.com 满分网,求λ的取值范围.
查看答案
数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Snmanfen5.com 满分网manfen5.com 满分网与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.