满分5 > 高中数学试题 >

若椭圆过点(-3,2)离心率为,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为...

若椭圆manfen5.com 满分网过点(-3,2)离心率为manfen5.com 满分网,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程;
(3)求manfen5.com 满分网的最大值与最小值.
(1)把点(3,2)代入椭圆方程,进而根据离心率和a,b,c的关系求得a和b,则椭圆方程可得. (2)当直线PA过圆M的圆心(8,6),弦PQ最大.因为直线PA的斜率一定存在,所以可设直线PA的方程为:y-6=k(x-8) 又因为PA与圆O相切,进而可求得圆心(0,0)到直线PA的距离求得k,则直线方程可得. (3)设∠AOP=α,则∠AOP=∠BOP,∠AOB=2α,根据二倍角公式求得cos∠AOB,进而根据•=cos∠AOB求得的最大值与最小值. 【解析】 (1)由题意得:解得a=,b= 所以椭圆的方程为 (2)由题可知当直线PA过圆M的圆心(8,6),弦PQ最大. 因为直线PA的斜率一定存在,所以可设直线PA的方程为:y-6=k(x-8) 又因为PA与圆O相切,所圆心(0,0)到直线PA的距离为 即=, 可得k=或k= 所以直线PA的方程为:x-3y+10=0或13x-9y-50=0 (3)设∠AOP=α, 则∠AOP=∠BOP,∠AOB=2α, 则cos∠AOB=2cos2α-1=-1, ∴•=cos∠AOB=-10 ∴(•)max=-,(•)min=-
复制答案
考点分析:
相关试题推荐
如图,某兴趣小组测得菱形养殖区ABCD的固定投食点A到两条平行河岸线l1、l2的距离分别为4m、8m,河岸线l1与该养殖区的最近点D的距离为1m,l2与该养殖区的最近点B的距离为2m.manfen5.com 满分网
(1)如图甲,养殖区在投食点A的右侧,若该小组测得∠BAD=60°,请据此算出养殖区的面积;
(2)如图乙,养殖区在投食点A的两侧,试在该小组未测得∠BAD的大小的情况下,估算出养殖区的最小面积.
查看答案
如图甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中点.现沿AD把平面PAD折起,使得PA⊥AB(如图乙所示),E、F分别为BC、AB边的中点.
manfen5.com 满分网
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求证:平面PAE⊥平面PDE;
(Ⅲ)在PA上找一点G,使得FG∥平面PDE.
查看答案
平面直角坐标系xOy中,已知向量manfen5.com 满分网,且manfen5.com 满分网
(1)求x与y之间的关系式;
(2)若manfen5.com 满分网,求四边形ABCD的面积.
查看答案
已知偶函数f:Z→Z满足f(1)=1,f(2011)≠1,对任意的a、b∈Z,都有f(a+b)≤max{f(a),f(b)},(注:max{x,y}表示x,y中较大的数),则f(2012)的可能值是    查看答案
已知中心为O的正方形ABCD的边长为2,点M、N分别为线段BC、CD上的两个不同点,且manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.