满分5 > 高中数学试题 >

已知函数f(x)=(ax-1)ex,a∈R (1)当a=1时,求函数f(x)的极...

已知函数f(x)=(ax-1)ex,a∈R
(1)当a=1时,求函数f(x)的极值.
(2)若函数f(x)在区间(0,1)上是单调增函数,求实数a的取值范围.
(1)把a=1代入,对函数求导,分解结不等式f′(x)>0,f′(x)<0,研究函数f(x),f′(x)的变化情况,进而研究函数的单调区间,由单调性求解函数的最值 (2)函数f(x)在区间(0,1)上是单调增函数⇔f′(x)≥0在区间(0,1)上恒成立,分类a,转化为求函数的最值. (法一)构造函数g(x)=ax+a-1,借助于一次函数的性质讨论. (法二)转化a恒成立,进而求在(0,1)上的最值(或值域) 【解析】 (I)因为f'(x)=(ax+a-1)ex, 所以当a=1时,f'(x)=xex, 令f'(x)=0,则x=0, 所以f(x),f'(x)的变化情况如下表: 所以x=0时,f(x)取得极小值f(0)=-1. (II)因为f'(x)=(ax+a-1)ex,函数f(x)在区间(0,1)上是单调增函数, 所以f'(x)≥0对x∈(0,1)恒成立. 又ex>0,所以只要ax+a-1≥0对x∈(0,1)恒成立, 解法一:设g(x)=ax+a-1,则要使ax+a-1≥0对x∈(0,1)恒成立, 只要成立, 即,解得a≥1. 解法二:要使ax+a-1≥0对x∈(0,1)恒成立, 因为x>0,所以对x∈(0,1)恒成立, 因为函数在(0,1)上单调递减, 所以只要.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网,试判断manfen5.com 满分网manfen5.com 满分网能否平行?
(2)若manfen5.com 满分网,求函数manfen5.com 满分网的最小值.
查看答案
已知manfen5.com 满分网=(1,2),manfen5.com 满分网=(1,1),且manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网的夹角为锐角,求实数λ的取值范围.
查看答案
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
查看答案
如图正六边形ABCDEF中,P是△CDE内(包括边界)的动点,设manfen5.com 满分网=amanfen5.com 满分网manfen5.com 满分网(α、β∈R),则α+β的取值范围是   
manfen5.com 满分网 查看答案
(中向量的概念)已知直线x+y=a与圆x2+y2=4交于A、B两点,且manfen5.com 满分网,其中O为原点,求实数a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.