满分5 > 高中数学试题 >

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC...

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长; (II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值. 【解析】 (I)∵c2=a2+b2-2abcosC=1+4-4×=4, ∴c=2, ∴△ABC的周长为a+b+c=1+2+2=5. (II)∵cosC=,∴sinC===. ∴sinA===. ∵a<c,∴A<C,故A为锐角.则cosA==, ∴cos(A-C)=cosAcosC+sinAsinC=×+×=.
复制答案
考点分析:
相关试题推荐
已知方程(y+1)(|x|+2)=4,若对任意x∈[a,b](a,b∈Z),都存在唯一的y∈[0,1]使方程成立;且对任意y∈[0,1],都有x∈[a,b](a,b∈Z)使方程成立,则a+b的最大值等于    查看答案
在平面直角坐标系中,设点P(X,Y)定义[OP]=|x|+|y|,其中O为坐标原点,对于以下结论:①符合[OP]=1的点P的轨迹围成的图形的面积为2;
②设P为直线manfen5.com 满分网+2y-2=0上任意一点,则[OP]的最小值为1;
③设P为直线y=kx+b(k,b∈R)上的任意一点,则“使[OP]最小的点P有无数个”的必要不充分条件是“k=±1”;其中正确的结论有    (填上你认为正确的所有结论的序号) 查看答案
已知椭圆C的标准方程为manfen5.com 满分网,且manfen5.com 满分网,A点坐标(0,b),B点坐标(0,-b),F点坐标(c,0),T点坐标(3c,0),若直线AT与直线BF的交点在椭圆上,则椭圆的离心率为    查看答案
圆C通过不同的三点P(λ,0),Q(3,0),R(0,1),又知圆C在点P处的切线的斜率为1,则λ为    查看答案
对一切正整数n,不等式manfen5.com 满分网恒成立,则实数x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.