满分5 > 高中数学试题 >

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2). (...

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围.
(I)根据题意可知f(x)=g(x)+h(x),再根据奇偶性求出f(-x),从而建立方程组,解之即可求出g(x)和h(x)的解析式; (II)先对函数f(x)进行配方求出对称轴,根据在区间[(a+1)2,+∞)上是增函数,建立关系式可求出a的范围,然后根据函数g(x)=(a+1)x是减函数,建立关系求出a的范围,从而分别求出命题P为真的条件和命题Q为真的条件,最后根据命题P、Q有且仅有一个是真命题求出a的范围即可. 【解析】 (I)∵f(x)=g(x)+h(x),g(-x)=-g(x),h(-x)=h(x) ∴f(-x)=-g(x)+h(x) 解得g(x)=(a+1)x,h(x)=x2+lg|a+2| (II)∵函数f(x)=+lg|a+2| 在区间[(a+1)2,+∞)上是增函数, ∴(a+1)2≥-解得a≥-1或a≤-且a≠-2 又由函数g(x)=(a+1)x是减函数,得a+1<0,∴a<-1且a≠-2 ∴命题P为真的条件是:a≥-1或a≤-且a≠-2 命题Q为真的条件是:a<-1且a≠-2. 又∵命题P、Q有且仅有一个是真命题,∴a>-
复制答案
考点分析:
相关试题推荐
设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
查看答案
已知方程(y+1)(|x|+2)=4,若对任意x∈[a,b](a,b∈Z),都存在唯一的y∈[0,1](使方程成立;且对任意y∈[0,1],都有x∈[a,b](a,b∈Z)使方程成立,则a+b的最大值等于    查看答案
在平面直角坐标系中,设点P(X,Y)定义[OP]=|x|+|y|,其中O为坐标原点,对于以下结论:①符合[OP]=1的点P的轨迹围成的图形的面积为2;
②设P为直线manfen5.com 满分网+2y-2=0上任意一点,则[OP]的最小值为1;
③设P为直线y=kx+b(k,b∈R)上的任意一点,则“使[OP]最小的点P有无数个”的必要不充分条件是“k=±1”;其中正确的结论有    (填上你认为正确的所有结论的序号) 查看答案
已知椭圆C的标准方程为manfen5.com 满分网,且manfen5.com 满分网,A点坐标(0,b),B点坐标(0,-b),F点坐标(c,0),T点坐标(3c,0),若直线AT与直线BF的交点在椭圆上,则椭圆的离心率为    查看答案
圆C通过不同的三点P(λ,0),Q(3,0),R(0,1),又知圆C在点P处的切线的斜率为1,则λ为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.