满分5 > 高中数学试题 >

已知函数f(x)=2x+1定义在R上. (1)若f(x)可以表示为一个偶函数g(...

已知函数f(x)=2x+1定义在R上.
(1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m-1(m∈R),求出p(t)的解析式;
(2)若p(t)≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围;
(3)若方程p(p(t))=0无实根,求m的取值范围.
(1)利用f(x)=g(x)+h(x)和f(-x)=g(-x)+h(-x)求出g(x)和h(x)的表达式,再求出p(t)关于t的表达式即可. (2)先有x∈[1,2]找出t的范围,在把所求问题转化为求p(t)在[,]的最小值.让大于等于m2-m-1即可. (3)转化为关于p(t)的一元二次方程,利用判别式的取值,再分别讨论即可. 【解析】 (1)假设f(x)=g(x)+h(x)①,其中g(x)偶函数,h(x)为奇函数, 则有f(-x)=g(-x)+h(-x),即f(-x)=g(x)-h(x)②, 由①②解得,. ∵f(x)定义在R上,∴g(x),h(x)都定义在R上. ∵,. ∴g(x)是偶函数,h(x)是奇函数,∵f(x)=2x+1, ∴,. 由,则t∈R, 平方得,∴, ∴p(t)=t2+2mt+m2-m+1. (2)∵t=h(x)关于x∈[1,2]单调递增,∴. ∴p(t)=t2+2mt+m2-m+1≥m2-m-1对于恒成立, ∴对于恒成立, 令,则, ∵,∴,故在上单调递减, ∴,∴为m的取值范围. (3)由(1)得p(p(t))=[p(t)]2+2mp(t)+m2-m+1, 若p(p(t))=0无实根,即[p(t)]2+2mp(t)+m2-m+1①无实根, 方程①的判别式△=4m2-4(m2-m+1)=4(m-1). 1°当方程①的判别式△<0,即m<1时,方程①无实根. 2°当方程①的判别式△≥0,即m≥1时, 方程①有两个实根, 即②, 只要方程②无实根,故其判别式, 即得③,且④, ∵m≥1,③恒成立,由④解得m<2,∴③④同时成立得1≤m<2. 综上,m的取值范围为m<2.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
某种商品定价为每件60元,不加收附加税时每年大约销售80万件,若政府征收附加税,每销售100元要征税p元(即税率为p%),因此每年销售量将减少manfen5.com 满分网p万件.
(1)将政府每年对该商品征收的总税金y(万元),表示成p的函数,并指出这个函数的定义域;
(2)要使政府在此项经营中每年收取的税金不少于128万元,问税率p%应怎样确定?
(3)在所收税金不少于128万元的前提下,要让厂家获得最大销售金额,则应如何确定p值?
查看答案
已知函数manfen5.com 满分网(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间manfen5.com 满分网上的取值范围.
查看答案
是否存在实数a,使得函数y=sin2x+acos x+manfen5.com 满分网a-manfen5.com 满分网在闭区间manfen5.com 满分网上的最大值是1?若存在,求出对应的a值;若不存在,说明理由.
查看答案
已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∪B=A,求实数m的取值;
(2)若A∩B={x|0≤x≤3},求实数m的值;
(3)若A⊆CRB,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.