满分5 > 高中数学试题 >

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)一个周期的图象...

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)一个周期的图象如图所示.
(1)求函数f(x)的表达式;
(2)若f(α)+f(α-manfen5.com 满分网)=manfen5.com 满分网,且α为△ABC的一个内角,求sinα+cosα的值.

manfen5.com 满分网
(1)根据函数的图象,求出A、T,求出ω,函数x=-时,y=0,结合-<φ<求出φ,然后求函数f(x)的表达式; (2)利用f(α)+f(α-)=,化简出(sinα+cosα)2,2sinαcosα=>0且α为△ABC的一个内角,确定sinα>0,cosα>0,求sinα+cosα的值. 【解析】 (1)从图知,函数的最大值为1,则A=1. 函数f(x)的周期为T=4×(+)=π. 而T=,则ω=2.又x=-时,y=0, ∴sin[2×(-)+φ]=0. 而-<φ<,则φ=, ∴函数f(x)的表达式为f(x)=sin(2x+). (2)由f(α)+f(α-)=,得 sin(2α+)+sin(2α-)=, 即2sin2αcos=,∴2sinαcosα=. ∴(sinα+cosα)2=1+=. ∵2sinαcosα=>0,α为△ABC的内角, ∴sinα>0,cosα>0,即sinα+cosα>0.∴sinα+cosα=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网manfen5.com 满分网如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.
(1)分别求出函数f(x)和g(x)的解析式;
(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.
查看答案
已知函数manfen5.com 满分网(其中x∈R).
求:
①函数f(x)的最小正周期;  
②函数f(x)的单调递减区间;
③函数f(x)图象的对称轴.
查看答案
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
查看答案
设非空集合A={x|2a+1≤x≤3a-5},B={x|y=manfen5.com 满分网},则A⊆(A∩B)的一个充分不必要条件是    查看答案
已知A、B、C是△ABC的三个内角,若sinA-3cosA=0,sin2B-sinBcosB-2cos2B=0,则角C的大小为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.