登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(,-1),=(cos...
已知a,b,c为△ABC的三个内角A,B,C的对边,向量
=(
,-1),
=(cosA,sinA).若
⊥
,且acosB+bcosA=csinC,则角B=
.
由向量数量积的意义,有,进而可得A,再根据正弦定理,可得sinAcosB+sinBcosA=sinC sinC,结合和差公式的正弦形式,化简可得sinC=sin2C,可得C,由A、C的大小,可得答案. 【解析】 根据题意,, 由正弦定理可得,sinAcosB+sinBcosA=sinCsinC, 又由sinAcosB+sinBcosA=sin(A+B)=sinC, 化简可得,sinC=sin2C, 则C=, 则, 故答案为.
复制答案
考点分析:
相关试题推荐
若
对一切x>0恒成立,则a的取值范围是
.
查看答案
设△ABC的三个内角A,B,C所对边的长分别是a,b,c,且
,那么A=
.
查看答案
若
,且
,则向量
与
的夹角为
°.
查看答案
设集合U={1,2,3,4,5},A={1,2},B={2,3}则∁
U
(A∪B)=
.
查看答案
已知函数f(x)=x
3
-3ax
2
-9a
2
x+a
3
.
(1)设a=1,求函数f(x)的极值;
(2)若
,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.