满分5 > 高中数学试题 >

设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*). (1)...

设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn
(1)根据题意,可得a1+2a2+3a3++(n-1)an-1=2n-1,两者相减,可得数列{an}的通项公式. (2)根据题意,求出bn的通项公式,继而求出数列{bn}的前n项和Sn. 【解析】 (1)∵a1+2a2+3a3+…+nan=2n①, ∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=2n-1② ①-②得nan=2n-1,an=(n≥2),在①中令n=1得a1=2, ∴an= (2)∵bn=. 则当n=1时,S1=2 ∴当n≥2时,Sn=2+2×2+3×22+…+n×2n-1 则2Sn=4+2×22+3×23+…+(n-1)•2n-1+n•2n 相减得Sn=n•2n-(2+22+23+…+2n-1)=(n-1)2n+2(n≥2) 又S1=2,符合Sn的形式, ∴Sn=(n-1)•2n+2(n∈N*)
复制答案
考点分析:
相关试题推荐
如图,五面体ABCDE中,正△ABC的边长为1,AE⊥平面ABC,CD∥AE,且CD=manfen5.com 满分网AE.
(I)设CE与平面ABE所成的角为α,AE=k(k>0),若manfen5.com 满分网,求k的取值范围;
(Ⅱ)在(I)和条件下,当k取得最大值时,求平面BDE与平面ABC所成角的大小.

manfen5.com 满分网 查看答案
某校2012年推优班报名正在进行,甲、乙、丙、丁四名学生跃跃欲试,现有四门学科(数学、物理、化学、信息技术)可供选择,每位学生只能任选其中一科.
(1)求恰有两门学科被选择的概率;
(2)已知报名后,丁已指定被录取.另外甲被录取的概率为manfen5.com 满分网,乙被录取的概率为manfen5.com 满分网,丙被录取的概率为manfen5.com 满分网.求甲、乙、丙三人中至少有两人被录取的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是     查看答案
将边长为1的正方形ABCD沿对角线AC对折成120°的二面角,则B、D在四面体A-BCD的外接球球面上的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.