已知函数f(x)=x
3+3ax-1,g(x)=f′(x)-ax-5,其中f′(x)是的f(x)的导函数.
(Ⅰ)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(Ⅱ)设a=-m
2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
考点分析:
相关试题推荐
设数列{a
n}满足:a
1+2a
2+3a
3+…+na
n=2
n(n∈N
*).
(1)求数列{a
n}的通项公式;
(2)设b
n=n
2a
n,求数列{b
n}的前n项和S
n.
查看答案
如图,五面体ABCDE中,正△ABC的边长为1,AE⊥平面ABC,CD∥AE,且CD=
AE.
(I)设CE与平面ABE所成的角为α,AE=k(k>0),若
,求k的取值范围;
(Ⅱ)在(I)和条件下,当k取得最大值时,求平面BDE与平面ABC所成角的大小.
查看答案
某校2012年推优班报名正在进行,甲、乙、丙、丁四名学生跃跃欲试,现有四门学科(数学、物理、化学、信息技术)可供选择,每位学生只能任选其中一科.
(1)求恰有两门学科被选择的概率;
(2)已知报名后,丁已指定被录取.另外甲被录取的概率为
,乙被录取的概率为
,丙被录取的概率为
.求甲、乙、丙三人中至少有两人被录取的概率.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin
2A+cos(A-C)的范围.
查看答案
已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2
m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2
n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2
k,2
k-1).
其中所有正确结论的序号是
查看答案