满分5 > 高中数学试题 >

已知函数 (1)试判断函数f(x)的单调性; (2)设m>0,求f(x)在[m,...

已知函数manfen5.com 满分网
(1)试判断函数f(x)的单调性;
(2)设m>0,求f(x)在[m,2m]上的最大值;
(3)试证明:对∀n∈N*,不等式manfen5.com 满分网
(1)利用商的求导法则求出所给函数的导函数是解决本题的关键,利用导函数的正负确定出函数的单调性; (2)利用导数作为工具求出函数在闭区间上的最值问题,注意分类讨论思想的运用; (3)利用导数作为工具完成该不等式的证明,注意应用函数的最值性质. 【解析】 (1)函数f(x)的定义域是:(0,+∞) 由已知 令f′(x)=0得,1-lnx=0,∴x=e ∵当0<x<e时,, 当x>e时, ∴函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减, (2)由(1)知函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减 故①当0<2m≤e即时,f(x)在[m,2m]上单调递增 ∴, ②当m≥e时,f(x)在[m,2m]上单调递减 ∴, ③当m<e<2m,即时 ∴. (3)由(1)知,当x∈(0,+∞)时,, ∴在(0,+∞)上恒有, 即且当x=e时“=”成立, ∴对∀x∈(0,+∞)恒有, ∵, ∴ 即对∀n∈N*,不等式恒成立.
复制答案
考点分析:
相关试题推荐
设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn
查看答案
如图,五面体ABCDE中,正△ABC的边长为1,AE⊥平面ABC,CD∥AE,且CD=manfen5.com 满分网AE.
(I)设CE与平面ABE所成的角为α,AE=k(k>0),若manfen5.com 满分网,求k的取值范围;
(Ⅱ)在(I)和条件下,当k取得最大值时,求平面BDE与平面ABC所成角的大小.

manfen5.com 满分网 查看答案
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是manfen5.com 满分网,每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试.
(Ⅰ)求该学生考上大学的概率.
(Ⅱ)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为ξ,求变量ξ的分布列及数学期望Eξ.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
已知定义域为(0,+∞)的函数f(x)满足:
(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;
(2)当x∈(1,2]时f(x)=2-x给出结论如下:
①任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k-1).
其中所有正确结论的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.