满分5 > 高中数学试题 >

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,...

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网
(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE; (Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角F-BE-D的余弦值; (Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置. 证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC. 因为ABCD是正方形,所以AC⊥BD, 从而AC⊥平面BDE.…(4分) 【解析】 (Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D-xyz如图所示. 因为BE与平面ABCD所成角为60,即∠DBE=60°, 所以. 由AD=3,可知,. 则A(3,0,0),,,B(3,3,0),C(0,3,0), 所以,. 设平面BEF的法向量为n=(x,y,z),则,即. 令,则n=. 因为AC⊥平面BDE,所以为平面BDE的法向量,. 所以. 因为二面角为锐角,所以二面角F-BE-D的余弦值为.…(8分) (Ⅲ)点M是线段BD上一个动点,设M(t,t,0). 则. 因为AM∥平面BEF, 所以=0,即4(t-3)+2t=0,解得t=2. 此时,点M坐标为(2,2,0), 即当时,AM∥平面BEF.…(12分)
复制答案
考点分析:
相关试题推荐
已知某公司2004至2008年的产品抽检情况如下表所示:
manfen5.com 满分网
由于受到金融海啸的影响,2009年计划生产8500件该产品,若生产一件合格品盈利0.5万元,生产一件次品亏损0.3万元.
(Ⅰ)完成题中表格,并指出该工厂生产的该产品的合格率最接近于哪个数值p?
(Ⅱ)以(Ⅰ)中的数值p作为该产品的合格率,请你帮该工厂作出经营利润方面的预测.
查看答案
△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a.
(1)求manfen5.com 满分网
(2)求A的取值范围.
查看答案
等比数列{an}是递增的等比数列,且满足a1a4=27,a2+a3=12.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
查看答案
在极坐标系中,和极轴垂直相交的直线l与圆ρ=4相交于A、B两点,若|AB|=4,则直线l的极坐标方程为     查看答案
如图,过点P作⊙O的割线PAB与切线PE,E为切点,连接AE、BE,∠APE的平分线分别与AE、BE相交于点C、D,若∠AEB=30°,则∠PCE=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.