满分5 > 高中数学试题 >

已知定义在实数集上的函数,(x∈N*),其导函数记为fn′(x),且满足,其中a...

已知定义在实数集上的函数manfen5.com 满分网,(x∈N*),其导函数记为fn′(x),且满足manfen5.com 满分网,其中a,x1,x2为常数,x1≠x2.设函数g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求实数a的值;
(Ⅱ)若函数g(x)无极值点,其导函数g′(x)有零点,求m的值;
(Ⅲ)求函数g(x)在x∈[0,a]的图象上任一点处的切线斜率k的最大值.
(Ⅰ)根据f2(x)=x2f2'(x)=2x,可得,化简可求; (Ⅱ)根据f1(x)=xf2(x)=x2f3(x)=x3,可得g(x)=mx2+x-3lnx(x>0).利用函数g(x)无极值点,其导函数g′(x)有零点,可得该零点左右g′(x)同号,从而可得二次方程2mx2+x-3=0有相同实根,故可求m的值; (Ⅲ)由(Ⅰ)知,,k=g′(x)=2mx-+1,k′=2m+,,分类讨论:①当-6≤m<0或m>0时,k′≥0恒成立,最大值为m-5;②当m<-6时,由k′=0,得x=,而,可得x=时,k取得最大值且最大值为. 【解析】 (Ⅰ)∵f2(x)=x2f2'(x)=2x ∴ ∴(x1-x2)(2a-1)=0 ∵x1≠x2,∴; (Ⅱ)∵f1(x)=xf2(x)=x2f3(x)=x3,∴g(x)=mx2+x-3lnx(x>0) ∴g′(x)= ∵函数g(x)无极值点,其导函数g′(x)有零点, ∴该零点左右g′(x)同号, ∵m≠0,∴二次方程2mx2+x-3=0有相同实根 ∴△=1+24m=0 ∴m=-; (Ⅲ)由(Ⅰ)知,,k=g′(x)=2mx-+1,k′=2m+ ∵x∈[0,],∴ ∴①当-6≤m<0或m>0时,k′≥0恒成立,∴k=g′(x)在(0,]上递增 ∴当x=时,k取得最大值,且最大值为m-5; ②当m<-6时,由k′=0,得x=,而 若x∈,则k′>0,k单调递增; 若x∈,则k′<0,k单调递减; 故当x=时,k取得最大值且最大值为. 综上,kmax=
复制答案
考点分析:
相关试题推荐
如图,椭圆G的中心在坐标原点,其中一个焦点为圆F:x2+y2-2x=0的圆心,右顶点是圆F与x轴的一个交点.已知椭圆G与直线l:x-my-1=0相交于A、B两点.
(I)求椭圆的方程;
(Ⅱ)求△AOB面积的最大值.

manfen5.com 满分网 查看答案
某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x元;③电力与机器保养等费用为x2-30x+600元:其中x是该厂生产这种产品的总件数.
(I)把每件产品的成本费p(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(Ⅱ)如果该厂生产的这种产品的数量x不超过170件且能全部销售,根据市场调查,每件产品的销售价为Q(x)(元),且
Q(x)=1240-manfen5.com 满分网.试问生产多少件产品,总利润最高?并求出最高总利润.(总利润=总销售额-总的成本)
查看答案
设等比数列{an}的前n项和为Sn,已知manfen5.com 满分网
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插人n个数,使这n+2个数组成公差为dn的等差数列,求数列{manfen5.com 满分网}的前n项和Tn
查看答案
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(I)求证:AF∥平面BDE;
(Ⅱ)求二面角B-DE-C的余弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网
(I)化简函数f(x)的解析式,并求其定义域和单调区间;
(Ⅱ)若f(α)=manfen5.com 满分网,求sin2α的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.