满分5 > 高中数学试题 >

已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;...

已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
(Ⅰ)由函数,知(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值. (Ⅱ)(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间. (Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围. 【解析】 (Ⅰ)∵函数, ∴(x>0). ∵曲线y=f(x)在x=1和x=3处的切线互相平行, ∴f'(1)=f'(3), 即, 解得. (Ⅱ)(x>0). ①当a≤0时,x>0,ax-1<0, 在区间(0,2)上,f'(x)>0; 在区间(2,+∞)上f'(x)<0, 故f(x)的单调递增区间是(0,2), 单调递减区间是(2,+∞). ②当时,, 在区间(0,2)和上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是(0,2)和,单调递减区间是 ③当时,,故f(x)的单调递增区间是(0,+∞). ④当时,,在区间和(2,+∞)上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是和(2,+∞),单调递减区间是. (Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max. 由已知,g(x)max=0,由(Ⅱ)可知, ①当时,f(x)在(0,2]上单调递增, 故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2, 所以,-2a-2+2ln2<0,解得a>ln2-1, 故. ②当时,f(x)在上单调递增, 在上单调递减, 故. 由可知, 2lna>-2,-2lna<2, 所以,-2-2lna<0,f(x)max<0, 综上所述,a>ln2-1.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(1)求a4及Sn
(2)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网,x∈R.函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
若圆x2+y2-4x-4y-10=0上恰有三个不同的点到直线l:y=kx的距离为2manfen5.com 满分网,则k=    查看答案
已知两定点M(-1,0),N(1,0),若直线上存在点P,使|PM|+|PN|=4,则该直线为“A型直线”.给出下列直线,其中是“A型直线”的是   
①y=x+1②y=2③y=-x+3④y=-2x+3 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.