满分5 > 高中数学试题 >

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1. ...

已知曲线C上任意一点M到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(1)求曲线C的方程;
(2)过点P(2,2)的直线与曲线C交于A、B两点,设manfen5.com 满分网.当△AOB的面积为manfen5.com 满分网时(O为坐标原点),求λ的值.
(1)由题设知:点M的轨迹C是以F为焦点,l′为准线的抛物线,由此能求出曲线C的方程. (2)设直线m的方程为y=kx+(2-2k),代入x2=4y,得x2-4kx+8(k-1)=0,由△=16(k2-2k+2)>0对k∈R恒成立,知直线m与曲线C恒有两个不同的交点,再由韦达定理、弦长公式、点到直线的距离公式,利用、△AOB的面积为,能求出λ的值. 【解析】 (1)∵点M到点F(1,0)的距离比它到直线l:y=-2的距离小于1, ∴点M在直线l的上方,点M到F(1,0)的距离与它到直线l′:y=-1的距离相等, ∴点M的轨迹C是以F为焦点,l′为准线的抛物线, 所以曲线C的方程为x2=4y. (2)当直线m的斜率不存在时,它与曲线C只有一个交点,不合题意, 设直线m的方程为y-2=k(x-2),即y=kx+(2-2k), 代入x2=4y,得x2-4kx+8(k-1)=0,(*) △=16(k2-2k+2)>0对k∈R恒成立, 所以,直线m与曲线C恒有两个不同的交点, 设交点A,B的坐标分别为A(x1,y1),B(x2,y2), 则x1+x2=4k,x1x2=8(k-1), ∵|AB|= = =4, 点O到直线m的距离, ∴ =4|k-1|• =4, ∵,∴4=4, ∴(k-1)4+(k-1)2-2=0, ∴(k-1)2=1,或(k-1)2=-2(舍去),∴k=0,或k=2. 当k=0时,方程(*)的解为, 若,,则, 若,则, 当k=2时,方程(*)的解为4, 若,,则, 若,,则=3-2, 所以,,或.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
查看答案
manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(1)求a4及Sn
(2)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网,x∈R.函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
若圆x2+y2-4x-4y-10=0上恰有三个不同的点到直线l:y=kx的距离为2manfen5.com 满分网,则k=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.