满分5 > 高中数学试题 >

已知函数. (Ⅰ)若函数在区间(其中a>0)上存在极值,求实数a的取值范围; (...

已知函数manfen5.com 满分网
(Ⅰ)若函数在区间manfen5.com 满分网(其中a>0)上存在极值,求实数a的取值范围;
(Ⅱ)如果当x≥1时,不等式manfen5.com 满分网恒成立,求实数k的取值范围;
(Ⅲ)求证[(n+1)!]2>(n+1)•en-2(n∈N*).
(Ⅰ)求出函数的极值,在探讨函数在区间(其中a>0)上存在极值,寻找关于a的不等式,求出 实数a的取值范围; (Ⅱ)如果当x≥1时,不等式恒成立,把k分离出来,转化为求函数最值. (Ⅲ)借助于(Ⅱ)的结论证明不等式. 【解析】 (Ⅰ)因为,x>0,则, 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. 所以f(x)在(0,1)上单调递增;在(1,+∞)上单调递减, 所以函数f(x)在x=1处取得极大值. 因为函数f(x)在区间(其中a>0)上存在极值, 所以,解得. (Ⅱ)不等式, 即为,记, 所以, 令h(x)=x-lnx,则,∵x≥1,∴h′(x)≥0. ∴h(x)在[1,+∞)上单调递增,∴[h(x)]min=h(1)=1>0, 从而g′(x)>0 故g(x)在[1,+∞)上也单调递增, ∴[g(x)]min=g(1)=2,所以k≤2 (3)由(2)知:恒成立, 即, 令x=n(n+1),则, 所以, ,, . 叠加得:ln[1×22×32× = 则1×22×32×n2×(n+1)>en-2, 所以[(n+1)!]2>(n+1)•en-2(n∈N*)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=lnx,若存在g(x)使得g(x)≤f(x)恒成立,则称g(x)是f(x)的一个“下界函数”.
(I)如果函数g(x)=manfen5.com 满分网-lnx(t为实数)为f(x)的一个“下界函数”,求t的取值范围;
(II)设函数F(x)=f(x)-manfen5.com 满分网+manfen5.com 满分网,试问函数F(x)是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
查看答案
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn
查看答案
从2003年开始,我国就通过实行高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔哪些有特殊才能的学生.某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A,B两个题目,该学生答对A,B两题的概率分别为manfen5.com 满分网,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对两个问题的概率均为manfen5.com 满分网,至少答对一题即可被录取.(假设每个环节的每个问题回答正确与否是相对独立的).
(I)求该学生被学校录取的概率;
(II)设该学生答对题目的个数为ξ,求ξ的分布列和数学期望.
查看答案
在△ABC中,内角A,B,C所对边长分别为a,b,c,manfen5.com 满分网,∠BAC=θ,a=4.
(Ⅰ)求b•c的最大值及θ的取值范围;
(Ⅱ)求函数manfen5.com 满分网的最值.
查看答案
已知关于x的不等式|x-2|+|x-a|≥2a.
(I)若a=1,求不等式的解集;
(II)若不等式的解集为R,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.