(1)利用平行线分线段成比例定理,结合平行线的传递性,可证出MN与CD平行且相等,从而得到四边形CDNM是平行四边形,可得CM∥DN,最后根据线面平行的判定定理,证出CM∥平面PAD;
(2)由线面垂直的判定与性质,可证出CM⊥平面PAB,从而得到当CM⊥PB时,有平面MCD⊥平面PAB.再在Rt△PCB和Rt△PMC中,利用含有30°角的直角三角形的性质,算出PM=PB,得到当平面MCD⊥平面PAB时,λ的值为.
【解析】
(1)过M作MN∥AB于交PA于N,连接DN
∵△PAB中,PM:PB=1:3
∴MN:AB=1:3,得MN=AB
∵MN∥AB,AB∥CD,∴MN∥CD
∵MN=AB=CD,∴四边形CDNM是平行四边形,可得CM∥DN
∵CM⊈平面PAD,DN⊆平面PAD,
∴CM∥平面PAD;
(2)∵PC⊥底面ABCD,AB⊆平面ABCD,∴AB⊥PC
又∵AB⊥BC,PC、BC是平面PBC内的相交直线
∴AB⊥平面PBC
∵CM⊆平面PBC,∴CM⊥AB,
因此,当CM⊥PB时,可得CM⊥平面PAB,再结合CM⊆平面MCD,可得平面MCD⊥平面PAB.
∵Rt△PCB中,∠PBC=30°,∴PB=2PC
而Rt△PMC中,∠PCM=30°,所以PM=PC=PB,得=
∴当平面MCD⊥平面PAB时,λ的值为