满分5 > 高中数学试题 >

已知集合P={3,5,6,8},集合Q={4,5,7,8},则P∩Q=( ) A...

已知集合P={3,5,6,8},集合Q={4,5,7,8},则P∩Q=( )
A.{5,8}
B.{3,4,5,6,7,8}
C.{3,6}
D.{4,7}
由P={3,5,6,8},Q={4,5,7,8},根据交集的运算法则能求出P∩Q={1}. 【解析】 ∵P={3,5,6,8},Q={4,5,7,8}, ∴P∩Q={5,8}. 故选A.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f′(x).
(1)当a=manfen5.com 满分网时,若不等式f′(x)>-manfen5.com 满分网对任意x∈R恒成立,求b的取值范围;
(2)求证:函数y=f′(x)在(-1,0)内至少存在一个零点;
(3)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-manfen5.com 满分网t在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.
查看答案
设抛物线C的方程为x2=4y,M为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.
(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程,并判断直线l与此圆的位置关系;
(2)求证:直线AB恒过定点;
(3)当m变化时,试探究直线l上是否存在点M,使△MAB为直角三角形,若存在,有几个这样的点,若不存在,说明理由.
查看答案
已知函数f(x)=logmx(mm为常数,0<m<1),且数列{f(an)}是首项为2,公差为2的等差数列.
(1)若bn=an•f(an),当m=manfen5.com 满分网时,求数列{bn}的前n项和Sn
(2)设cn=an•lgan,如果{cn}中的每一项恒小于它后面的项,求m的取值范围.
查看答案
三棱柱ABC-A1B1C1的直观图及三视图(主视图和俯视图是正方形,左侧图是等腰直角三角形)如图,D为AC的中点.
(1)求证:AB1∥平面BDC1
(2)求证:A1C⊥平面BDC1
(3)求二面角A-BC1-D的正切值.

manfen5.com 满分网 查看答案
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=manfen5.com 满分网,其中n=a+b+c+d)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.