(1)证明AB⊥VC,只需证明AB⊥平面CDV,取AB的中点D,连VD,CD(,利用VA=VB,AC=BC,即可证得;
(2)利用VV-ABC=VA-VCD+VB-VCD,即可求得结论.
(1)证明:取AB的中点D,连VD,CD(1分)
∵VA=VB,AC=BC,∴VD⊥AB,CD⊥AB(3分)
∵VD∩CD=D
∴AB⊥平面CDV(5分)
∵VC⊂平面CDV
∴AB⊥VC(7分)
(2)【解析】
∵,
∴(9分)
∵VC=1,∴(10分)
∵AB⊥平面CDV
∴VV-ABC=VA-VCD+VB-VCD(11分)=(13分)
=(14分)