满分5 >
高中数学试题 >
已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题: ①若α∥β,则m⊥...
已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:
①若α∥β,则m⊥l;
②若α⊥β,则m∥l;
③若m⊥l,则α∥β
④若m∥l,则α⊥β
其中正确命题的个数是( )
A.1
B.2
C.3
D.4
考点分析:
相关试题推荐
已知集合A={x|x
2-3x≤0},B={y|y=-x
2+2,x∈[-2,-1]},则A∩B=( )
A.[-2,3]
B.[0,1]
C.[-2,1]
D.[0,2]
查看答案
若复数
(a∈R,i为虚数单位)是纯虚数,则实数a的值为( )
A.-8
B.-6
C..3
D.7
查看答案
已知曲线f(x)=ax+blnx-1在点(1,f(1))处的切线为直线y=0.
(1)求实数a,b的值;
(2)设函数
,其中m为常数.
(i)求g(x)的单调递增区间;
(ii)求证:当1<m<3,x∈(1,e)(其中e=2.71828…)时,总有
成立.
查看答案
已知抛物线y
2=4x的焦点为F,准线为l.
(1)求经过点F的直线l相切,且圆心在直线x-1=0上的圆的方程;
(2)设过点F且不与坐标轴垂直的直线交抛物线于A、B两点,线段AB的垂直平分线与x轴交于点M,求点M横坐标的取值范围.
查看答案
在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为24吨;如果放置7个网箱,则每个网箱的产量为18吨,由于该水域面积限制,最多只能放置12个网箱.已知养殖总成本为50+2x万元.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为1万元/吨,应放置多少个网箱才能使每个网箱的平均收益最大?
查看答案