满分5 > 高中数学试题 >

如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=,AA1=3,M...

如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=manfen5.com 满分网,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为   
manfen5.com 满分网
先将直三棱柱ABC-A1B1C1沿棱BB1展开成平面连接AC1,与BB1的交点即为满足AM+MC1最小时的点M,由此可以求得△AMC1的三边长,再由余弦定理求出其中一角,由面积公式求出面积 【解析】 将直三棱柱ABC-A1B1C1沿棱BB1展开成平面连接AC1,与BB1的交点即为满足AM+MC1最小时的点M, 由于AB=1,BC=2,AA1=3,再结合棱柱的性质,可得BM=AA1=1,故B1M=2 由图形及棱柱的性质,可得AM=,AC1=,MC1=2 cos∠AMC1==- 故sin∠AMC1= △AMC1的面积为×××= 故答案为
复制答案
考点分析:
相关试题推荐
已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是    查看答案
某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是    查看答案
复数manfen5.com 满分网在复平面上对应的点在第    象限. 查看答案
已知m,t∈R,函数f (x)=(x-t)3+m.
(I)当t=1时,
(i)若f (1)=1,求函数f (x)的单调区间;
(ii)若关于x的不等式f (x)≥x3-1在区间[1,2]上有解,求m的取值范围;
(Ⅱ)已知曲线y=f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知点A(一1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA
(I)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且manfen5.com 满分网,直线OP与QA交于点M,试探究:点M的横坐标是否为定值?并说明理由.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.