满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P...

选修4-1:几何证明选讲
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.

manfen5.com 满分网
因AE=AC,AB为直径,可得∠OAC=∠OAE,由∠POC=∠OAC+∠OCA=∠EAC.及由EACD四点共圆可得∠EAC=∠PDE,从而可证 证明:因AE=AC,AB为直径, 所以,弧EB与弧BC相等 由于同一个圆中,等弧所对的圆周角相等 故∠OAC=∠OAE.  …(3分) 因为OA=OC 所以∠OAC=∠OCA 因为∠POC=∠OAC+∠OCA=∠OAC+∠OAC=∠EAC. 因为EACD四点共圆 所以,∠EAC=∠PDE, 所以,∠PDE=∠POC.…(10分)
复制答案
考点分析:
相关试题推荐
已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求c满足的条件;若不能,请说明理由.
(2)设Pn=manfen5.com 满分网manfen5.com 满分网,Qn=manfen5.com 满分网,若r>c>4,求证:对于一切n∈N*,不等式-n<Pn-Qn<n2+n恒成立.
查看答案
已知k∈R,函数f(x)=mx+knx(0<m≠1,n≠1).
(1)如果实数m,n满足m>1,mn=1,函数f(x)是否具有奇偶性?如果有,求出相应的k值,如果没有,说明为什么?
(2)如果m>1>n>0判断函数f(x)的单调性;
(3)如果m=2,n=manfen5.com 满分网,且k≠0,求函数y=f(x)的对称轴或对称中心.
查看答案
如图,直角三角形ABC中,∠B=90°,AB=1,BC=manfen5.com 满分网.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A′MN,使顶点A′落在边BC上(A′点和B点不重合).设∠AMN=θ.
(1)用θ表示∠BA′M和线段AM的长度,并写出θ的取值范围;
(2)求线段AN长度的最小值.

manfen5.com 满分网 查看答案
已知椭圆中心在坐标原点,短轴长为2,一条准线l的方程为x=2.
(1)求椭圆方程;
(2)设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

manfen5.com 满分网 查看答案
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)设点M是线段BD 上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.