满分5 > 高中数学试题 >

已知函数f(x)=lnx,g(x)=ex. ( I)若函数φ(x)=f(x)-,...

已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-manfen5.com 满分网,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x,f (x))处的切线.证明:在区间(1,+∞)上存在唯一的x,使得直线l与曲线y=g(x)相切.
(Ⅰ)求导函数,确定导数恒大于0,从而可得求函数φ (x)的单调区间; (Ⅱ)先求直线l为函数的图象上一点A(x,f (x))处的切线方程,再设直线l与曲线y=g(x)相切于点,进而可得,再证明在区间(1,+∞)上x存在且唯一即可. (Ⅰ)【解析】 =,.(2分) ∵x>0且x≠1,∴φ'(x)>0 ∴函数φ(x)的单调递增区间为(0,1)和(1,+∞).(4分) (Ⅱ)证明:∵,∴, ∴切线l的方程为, 即,①(6分) 设直线l与曲线y=g(x)相切于点, ∵g'(x)=ex,∴,∴x1=-lnx.(8分) ∴直线l也为, 即,②(9分) 由①②得 , ∴.(11分) 下证:在区间(1,+∞)上x存在且唯一. 由(Ⅰ)可知,φ(x)=在区间(1,+∞)上递增. 又,,(13分) 结合零点存在性定理,说明方程φ(x)=0必在区间(e,e2)上有唯一的根,这个根就是所求的唯一x. 故结论成立.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且三角形POA的三边所在直线的斜率满足kOP+kOA=kPA
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若Q是轨迹C上异于点P的一个点,且manfen5.com 满分网,直线OP与QA交于点M,问:是否存在点P使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=manfen5.com 满分网
(1)求an与bn
(2)证明:manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定t的值,使PA∥平面MQB;
(3)在(2)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

manfen5.com 满分网 查看答案
已知集合A={x|x2-7x+6≤0,x∈N*},集合B={x||x-3|≤3.x∈N*},集合M={(x,y)|x∈A,y∈B}
(1)求从集合M中任取一个元素是(3,5)的概率;
(2)从集合M中任取一个元素,求x+y≥10的概率;
(3)设ξ为随机变量,ξ=x+y,写出ξ的分布列,并求Eξ.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,若tanA=3,manfen5.com 满分网
(1)求角B的大小;
(2)若c=4,求△ABC面积
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.