满分5 > 高中数学试题 >

如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,...

manfen5.com 满分网如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
(1)根据线面垂直得到线与线垂直,根据直径所对的圆周角是直角,得到两个三角形是等腰直角三角形,有线面垂直得到结果. (2)做出辅助线,延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.,做出∠FHC为平面BEF与平面ABC所成的二面角的平面角,求出平面角. 【解析】 (1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM. 又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE, 而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°. 又∵∠BAC=30°,AC=4,∴,AM=3,CM=1.∵EA⊥平面ABC,FC∥EA, ∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形. ∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得). ∵MF∩BM=M,∴EM⊥平面MBF. 而BF⊂平面MBF,∴EM⊥BF. (2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG. 而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的 二面角的平面角.(8分) 在Rt△ABC中,∵∠BAC=30°,AC=4, ∴. 由,得GC=2.∵. 又∵,∴,则.(12分) ∴△FCH是等腰直角三角形,∠FHC=45°.∴平面BEF与平面ABC所成的锐二面角的余弦值为.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网与 manfen5.com 满分网共线,设函数y=f(x).
(1)求函数f(x)的周期及最大值;
(2)已知锐角△ABC中的三个内角分别为A、B、C,若有manfen5.com 满分网,边BC=manfen5.com 满分网manfen5.com 满分网,求△ABC的面积.
查看答案
若不等式manfen5.com 满分网对任意的实数x>0,y>0恒成立,则实数a的最小值为    查看答案
设椭圆C:manfen5.com 满分网,F是右焦点,l是过点F的一条直线(不与y轴平行),交椭圆于A、B两点,l′是AB的中垂线,交椭圆的长轴于一点D,则manfen5.com 满分网的值是    查看答案
已知sinα+cosα=manfen5.com 满分网,0<α<π,则tanα=    查看答案
an=6n-4(n=1,2,3,4,5,6)构成集合A,manfen5.com 满分网(n=1,2,3,4,5,6)构成集合B,任取x∈A∪B,则x∈A∩B的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.