已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x
2-2x-1,且g(1)=-1.令
.
(1)求g(x)的表达式;
(2)若函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(3)记函数H(x)=[x(x-a)
2-1]•[-x
2+(a-1)x+a-1],若函数y=H(x)有5个不同的零点,求实数a的取值范围.
考点分析:
相关试题推荐
已知数列{a
n}的通项公式为a
n=
(n∈N
∗).
(1)求数列{a
n}的最大项;
(2)设b
n=
,求实常数p,使得{b
n}为等比数列;
(3)设m,n,p∈N
*,m<n<p,问:数列{a
n}中是否存在三项a
m,a
n,a
p,使数列a
m,a
n,a
p是等差数列?如果存在,求出这三项;如果不存在,说明理由.
查看答案
已知椭圆
的左顶点为A,左、右焦点分别为F
1,F
2,且圆C:
过A,F
2两点.
(1)求椭圆标准的方程;
(2)设直线PF
2的倾斜角为α,直线PF
1的倾斜角为β,当β-α=
时,证明:点P在一定圆上;
(3)设椭圆的上顶点为Q,证明:PQ=PF
1+PF
2.
查看答案
为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N
*且n≤118)个购票者的等待时间t
n关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.
(1)求证:平面PAB⊥平面PCB;
(2)求证:PD∥平面EAC.
查看答案
已知O为坐标原点,
,
.
(1)求y=f(x)的最小正周期;
(2)将f(x)图象上各点的纵坐标不变,横坐标扩大为原来的两倍,再将所得图象向左平移
个单位后,所得图象对应的函数为g(x),且
,
,求cos2(α-β)-1的值.
查看答案