满分5 > 高中数学试题 >

选修4-1 几何证明选讲 圆的两弦AB、CD交于点F,从F点引BC的平行线和直线...

选修4-1 几何证明选讲
圆的两弦AB、CD交于点F,从F点引BC的平行线和直线AD交于P,再从P引这个圆的切线,切点是Q.
求证:PF=PQ.

manfen5.com 满分网
因为A,B,C,D四点共圆,所以∠ADF=∠ABC.因为PF∥BC,所以∠AFP=∠FQP.再由∠APF=∠FPA,得△APF∽△FPQ.由此能够证明PF=PQ. 证明:因为A,B,C,D四点共圆, 所以∠ADF=∠ABC. 因为PF∥BC,所以∠AFP=∠ABC. 所以∠AFP=∠FQP. 又因为∠APF=∠FPA, 所以△APF∽△FPQ.所以=. 所以PF2=PA⋅PD.     因为PQ与圆相切,所以PQ2=PA⋅PD. 所以PF2=PQ2.所以PF=PQ.
复制答案
考点分析:
相关试题推荐
已知二次函数g(x)对任意实数x都满足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令manfen5.com 满分网
(1)求g(x)的表达式;
(2)若函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(3)记函数H(x)=[x(x-a)2-1]•[-x2+(a-1)x+a-1],若函数y=H(x)有5个不同的零点,求实数a的取值范围.
查看答案
已知数列{an}的通项公式为an=manfen5.com 满分网(n∈N).
(1)求数列{an}的最大项;
(2)设bn=manfen5.com 满分网,求实常数p,使得{bn}为等比数列;
(3)设m,n,p∈N*,m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap是等差数列?如果存在,求出这三项;如果不存在,说明理由.
查看答案
已知椭圆manfen5.com 满分网的左顶点为A,左、右焦点分别为F1,F2,且圆C:manfen5.com 满分网过A,F2两点.
(1)求椭圆标准的方程;
(2)设直线PF2的倾斜角为α,直线PF1的倾斜角为β,当β-α=manfen5.com 满分网时,证明:点P在一定圆上;
(3)设椭圆的上顶点为Q,证明:PQ=PF1+PF2
查看答案
为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N*且n≤118)个购票者的等待时间tn关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.
(1)求证:平面PAB⊥平面PCB;
(2)求证:PD∥平面EAC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.