满分5 > 高中数学试题 >

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设...

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点,直线manfen5.com 满分网(参数t∈R)与曲线C的极坐标方程为 ρcos2θ=2sinθ
(Ⅰ)求直线l与曲线C的普通方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,证明:manfen5.com 满分网=0.
(Ⅰ)由直线l的参数方程用代入法消去t得普通方程,曲线C的极坐标方程两边同乘ρ得曲线C的普通方程. (Ⅱ)设A(x1,y1),B(x2,y2),由  消去y得  x2-4x-4=0,求出x1•x2和y1y2的值,代入 =x1x2+y1y2进行运算. 【解析】 (Ⅰ)由直线l的参数方程消去t得普通方程为 y=2x+2. 由曲线C的极坐标方程两边同乘ρ得曲线C的普通方程为  x2=2y. (Ⅱ)设A(x1,y1),B(x2,y2),由  消去y得  x2-4x-4=0, ∴x1+x2=4,x1•x2=-4,∴y1y2=,∴=x1x2+y1y2=0.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)∠DEA=∠DFA;
(2)AB2=BE•BD-AE•AC.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的manfen5.com 满分网,总存在唯一的manfen5.com 满分网,使得g(x2)=f(x1),求实数a的取值范围.
查看答案
在直角坐标系xOy中,椭圆manfen5.com 满分网的左、右焦点分别为F1,F2.其中F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)若过点D(4,0)的直线l与C1交于不同的两点E,F.E在DF之间,试求△ODE 与△ODF面积之比的取值范围.(O为坐标原点)
查看答案
如图,五面体A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角.
(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;
(Ⅱ)当AB1∥平面BDC1时,求二面角C-BC1-D余弦值.

manfen5.com 满分网 查看答案
manfen5.com 满分网某校高三数学竞赛初赛考试后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为x,y.若|x-y|≥10,则称此二
人为“黄金帮扶组”,试求选出的二人的概率P1
(Ⅲ)以此样本的频率当作概率,现随机在这组样本中选出的3名学生,求成绩不低于120分的人数ξ分布列及期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.