满分5 > 高中数学试题 >

某品牌设计了编号依次为1,2,3,…,n(n≥4,且n∈N*)的n种不同款式的时...

某品牌设计了编号依次为1,2,3,…,n(n≥4,且n∈N*)的n种不同款式的时装,由甲、乙两位模特分别独立地从中随机选择i,j(0≤i,j≤n,且i,j∈N)种款式用来拍摄广告.
(1)若i=j=2,且甲在1到m(m为给定的正整数,且2≤m≤n-2)号中选择,乙在(m+1)到n号中选择.记Pst(1≤s≤m,m+1≤t≤n)为款式(编号)s和t同时被选中的概率,求所有的Pst的和;
(2)求至少有一个款式为甲和乙共同认可的概率.
(1)求出甲从1到m(m为给定的正整数,且2≤m≤n-2)号中任选两款,乙从(m+1)到n号中任选两款的所有等可能基本事件的种数,款式s和t(1≤s≤m,m+1≤t≤n)同时被选中包含的基本事件的种数,利用古典概型概率计算公式可求; (2)求出甲、乙从n种不同款式的服装中选取服装的所有可能种数,确定“没有一个款式为甲和乙共同认可”包含的基本事件种数,利用对立事件的概率公式可求. 【解析】 (1)甲从1到m(m为给定的正整数,且2≤m≤n-2)号中任选两款,乙从(m+1)到n号中任选两款的所有等可能基本事件的种数为, 记“款式s和t(1≤s≤m,m+1≤t≤n)同时被选中”为事件B,则事件B包含的基本事件的种数为, 所以P(B)=, 则所有的Pst的和为:;(4分) (2)甲从n种不同款式的服装中选取服装的所有可能种数为:=2n, 同理得,乙从n种不同款式的服装中选取服装的所有可能种数为2n, 据分步乘法计数原理得,所有等可能的基本事件的种数为:2n•2n=4n, 记“至少有一个款式为甲和乙共同认可”为事件A,则事件A的对立事件为:“没有一个款式为甲和乙共同认可”, 而事件包含的基本事件种数为:++…+==(1+2)n=3n, 所以.(10分)
复制答案
考点分析:
相关试题推荐
如图,正四棱柱ABCD-A1B1C1D1中,AD=1,D1D=2,点P在棱CC1上,且manfen5.com 满分网
(1)求PC的长;
(2)求钝二面角A-A1B-P的大小.

manfen5.com 满分网 查看答案
选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=manfen5.com 满分网,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆manfen5.com 满分网在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.

manfen5.com 满分网 查看答案
定义在正实数集上的函数f(x)满足下列条件:
①存在常数a(0<a<1),使得f(a)=1;②对任意实数m,当x∈R+时,有f(xm)=mf(x).
(1)求证:对于任意正数x,y,f(xy)=f(x)+f(y);
(2)证明:f(x)在正实数集上单调递减;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求实数a的取值范围.
查看答案
已知等比数列{an}的首项为a1(a1>0),公比为q(0<q<1),且manfen5.com 满分网manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次抽取的一个无穷等比数列,满足其所有项的和落在区间manfen5.com 满分网内,试求出所有这样的等比数列.
查看答案
在平面直角坐标系xOy中,椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右顶点为A,直线BC过原点O,且点B在x轴上方,直线AB与AC分别交直线l:x=a+1于点E、F.
(1)若点manfen5.com 满分网,求△ABC的面积;
(2)若点B为动点,设直线AB与AC的斜率分别为k1、k2
①试探究:k1•k2是否为定值?若为定值,请求出;若不为定值,请说明理由;
②求△AEF的面积的最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.