满分5 > 高中数学试题 >

选修4-5:不等式选讲a,b,c∈R+,求证:.

选修4-5:不等式选讲a,b,c∈R+,求证:manfen5.com 满分网
左端变形+1=∴只需证此式≥即可,再由柯西不等式可证得. 【解析】 ∴+1≥ ∴  即证.
复制答案
考点分析:
相关试题推荐
已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:manfen5.com 满分网,求直线l与曲线C相交所成的弦的弦长.
查看答案
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(1)求证:A、P、D、F四点共圆;
(2)若AE•ED=24,DE=EB=4,求PA的长.

manfen5.com 满分网 查看答案
已知点F是椭圆manfen5.com 满分网右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足manfen5.com 满分网,若点P满足manfen5.com 满分网
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断manfen5.com 满分网是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案
已知数列{2n-1•an}的前n项和Sn=9-6n
(1)求数列{an}的通项公式.
(2)设manfen5.com 满分网,求数列manfen5.com 满分网的前n项和.
查看答案
manfen5.com 满分网如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(1)证明:BM⊥平面SMC;
(2)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.