满分5 > 高中数学试题 >

已知全集U=R,集合P={x|x2≤1},那么∁UP=( ) A.(-∞,-1]...

已知全集U=R,集合P={x|x2≤1},那么∁UP=( )
A.(-∞,-1]
B.[1,+∞)
C.[-1,1]
D.(-∞,-1)∪(1,+∞)
先求出集合P中的不等式的解集,然后由全集U=R,根据补集的定义可知,在全集R中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可. 【解析】 由集合P中的不等式x2≤1,解得-1≤x≤1, 所以集合P=[-1,1],由全集U=R, 得到CUP=(-∞,1)∪(1,+∞). 故选D
复制答案
考点分析:
相关试题推荐
已知f(x)=manfen5.com 满分网在区间[-1,1]上是增函数.
(1)求实数a的值所组成的集合A;
(2)设关于x的方程f(x)=manfen5.com 满分网的两个根为x1、x2,若对任意x∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范围.
查看答案
选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程为manfen5.com 满分网(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为manfen5.com 满分网
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B,若点P的坐标为(3,manfen5.com 满分网),求|PA|+|PB|.
查看答案
如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE•CE=EF•EA.

manfen5.com 满分网 查看答案
已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x,求证:x>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范围.
查看答案
如图,已知圆G:(x-2)2+y2=r2是椭圆manfen5.com 满分网的内接△ABC的内切圆,其中A为椭圆的左顶点,
(1)求圆G的半径r;
(2)过点M(0,1)作圆G的两条切线交椭圆于E,F两点,证明:直线EF与圆G相切.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.