满分5 > 高中数学试题 >

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N). (1...

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).
(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;
(2)设manfen5.com 满分网,若对任意的正整数n,当m∈[-1,1]时,不等式manfen5.com 满分网恒成立,求实数t的取值范围.
(1)由题设知a2=6,a3=12,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,所以an-a1=2[n+(n-1)+…+3+2],由此可知数列{an}的通项公式为an=n(n+1). (2)由题设条件可推出=,令,则,当x≥1时,f'(x)>0恒成立,f(x)在x∈[1,+∞)上是增函数,故f(x)min=f(1)=3,, 要使对任意的正整数n,当m∈[-1,1]时,不等式恒成立,则须使,即t2-2mt>0,对∀m∈[-1,1]恒成立,由此可知实数t的取值范围. 【解析】 (1)∵a1=2,an-an-1-2n=0(n≥2,n∈N)∴a2=6,a3=12(2分) 当n≥2时,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2, ∴an-a1=2[n+(n-1)+…+3+2], ∴(5分) 当n=1时,a1=1×(1+1)=2也满足上式, ∴数列{an}的通项公式为an=n(n+1)(6分) (2)==(8分) 令,则,当x≥1时,f'(x)>0恒成立 ∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3 即当n=1时,(11分) 要使对任意的正整数n,当m∈[-1,1]时,不等式恒成立, 则须使, 即t2-2mt>0, 对∀m∈[-1,1]恒成立, ∴, ∴实数t的取值范围为(-∞,-2)∪(2,+∞)(14分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=mx3+(ax-1)(x-2)(x∈R)的图象在x=1处的切线与直线x+y=0平行.
(Ⅰ)求m的值;
(Ⅱ)当a≥0时,解关于x的不等式f(x)<0.
查看答案
某中学要用三辆通勤车从新校区把教师接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;汽车走公路②堵车的概率为p,不堵车的概率为为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求至少有两辆车被堵的概率.
查看答案
如图,五面体A-BCC1B1中,AB1=4,底面ABC是正三角形,AB=2,四边形BCC1B1是矩形,二面角A-BC-C1为直二面角,D为AC的中点.
(1)证明:AB1∥平面BDC1
(2)求二面角C-BC1-D的余弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(Ⅰ)若f(x)=1,求manfen5.com 满分网的值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足manfen5.com 满分网,求f(2B)的取值范围.
查看答案
设定义域为[x1,x2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量manfen5.com 满分网=(x1,y1),manfen5.com 满分网=(x2,y2),manfen5.com 满分网=(x,y),满足x=λx1+(1-λ)x2(0<λ<1),又有向量manfen5.com 满分网manfen5.com 满分网+(1-λ)manfen5.com 满分网,现定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指|manfen5.com 满分网|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为manfen5.com 满分网=(0,1);
③“函数y=5x2在[0,1]上可在标准1下线性近似”;
④“函数y=5x2在[0,1]上可在标准manfen5.com 满分网下线性近似”.
其中所有正确结论的番号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.