满分5 > 高中数学试题 >

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已...

以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为manfen5.com 满分网,圆C的参数方程为manfen5.com 满分网,(θ为参数),求直线l被圆C截得的弦长.
先将直线的极坐标方程化成普通方程,然后将圆的参数方程化为普通方程,利用点到直线的距离公式求出点C到直线的距离,最后用垂径公式求出弦长即可. 【解析】 由=12. ∴ 将圆的参数方程化为普通方程为x2+y2=10.圆心为C(0,0),半径为10. ∴点C到直线的距离为 ∴直线l被圆截得的弦长为
复制答案
考点分析:
相关试题推荐
选修4-2:矩阵与交换
已知二阶矩阵M=manfen5.com 满分网,矩阵M对应的变换将点(2,1)变换成点(4,-1).求矩阵M将圆x2+y2=1变换后的曲线方程.
查看答案
函数f(x)=aex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(Ⅰ)求此平行线的距离;
(Ⅱ)若存在x使不等式manfen5.com 满分网成立,求实数m的取值范围;
(Ⅲ)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x,我们把|f(x)-g(x)|的值称为两函数在x处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=manfen5.com 满分网的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

manfen5.com 满分网 查看答案
已知数列{an}前n项和为Sn,且a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设bn=(2n-1)an,求数列{bn} 的前n项和为Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](t>0),且数列{cn} 是单调递增数列,求实数t的取值范围.
查看答案
如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1CC1
(1)求直线C1B与底面ABC所成角的正弦值;
(2)在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1(要求说明理由).
(3)在(2)的条件下,若AB=manfen5.com 满分网,求二面角A-EB1-A1的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.