满分5 > 高中数学试题 >

选修4-4:坐标系与参数方程 在极坐标系中,O为极点,已知圆C的圆心为,半径r=...

选修4-4:坐标系与参数方程
在极坐标系中,O为极点,已知圆C的圆心为manfen5.com 满分网,半径r=1,P在圆C上运动.
(I)求圆C的极坐标方程;
(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程.
(Ⅰ)先设圆上任一点坐标为(ρ,θ),由余弦定理得出关于ρ,θ的关系式,即为所求圆的极坐标方程; (Ⅱ)设Q(x,y)则P(2x,2y),根据P在圆上,即可Q的直角坐标方程. 【解析】 (Ⅰ)设圆上任一点坐标为(ρ,θ),由余弦定理得 所以圆C的极坐标方程为…(5分) (Ⅱ)圆C的极坐标方程为可化成直角坐标方程为: 设Q(x,y)则P(2x,2y),P在圆上, ∴, 则Q的直角坐标方程为…(10分)
复制答案
考点分析:
相关试题推荐
选做题:
如图,AB是半圆O的直径,C是圆周上一点(异于A、B),过C作圆O的切线l,过A作直线l的垂线AD,垂足为D,AD交半圆于点E.求证:CB=CE.

manfen5.com 满分网 查看答案
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若manfen5.com 满分网,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案
如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B1C1上的动点,且EF∥CC1,CD=DD1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.

manfen5.com 满分网 查看答案
设数列{an}是首项为a1(a1>0),公差为2的等差数列,其前n项和为Sn,且manfen5.com 满分网成等差数列.
(Ⅰ)求数列{an]的通项公式;
(Ⅱ)记manfen5.com 满分网的前n项和为Tn,求Tn
查看答案
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55)150.3
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.