满分5 > 高中数学试题 >

设集合A={x||x|≤2,x∈R},B={y|y=-x2,-1≤x≤2},则∁...

设集合A={x||x|≤2,x∈R},B={y|y=-x2,-1≤x≤2},则∁R(A∩B)等于( )
A.R
B.(-∞,-2)∪(0.+∞)
C.(-∞,-1)∪(2,+∞)
D.φ
根据题意,解|x|≤2可得集合A,由x的范围结合二次函数的性质,可得y的取值范围,即可得集合B;由交集的定义,可得A∩B,进而由补集的定义,计算可得答案. 【解析】 |x|≤2⇔-2≤x≤2,则集合A={x|-2≤x≤2}=[-2,2], 对于B,若-1≤x≤2,则-4≤-x2≤0, 则有B={y|-4≤y≤0}=[-4,0], 则A∩B=[-2,0], ∁R(A∩B)=(-∞,-2)∪(0,+∞); 故选B.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.(a为常数,a>0)
(Ⅰ)若manfen5.com 满分网是函数f(x)的一个极值点,求a的值;
(Ⅱ)求证:当0<a≤2时,f(x)在manfen5.com 满分网上是增函数;
(Ⅲ)若对任意的a∈(1,2),总存在 manfen5.com 满分网,使不等式f(x)>m(1-a2)成立,求实数m的取值范围.
查看答案
如图,椭圆E:manfen5.com 满分网的右焦点F2与抛物线y2=8x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求manfen5.com 满分网的最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
查看答案
等差数列{an}中,a1,a2,a3分别是下表第一、二、三列中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一行.
第一列第二列第三列
第一行-331
第二行52
第三行-12
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网,设数列{bn}的前n项和Sn(n∈N*),证明:Sn<2.
查看答案
在全市摸底数学考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)从两班10名同学中各抽取一人,在已知有人及格的条件下,求乙班同学不及格的概率;
(Ⅱ)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.