对于①,只需考虑反比例函数在[1,+∞)上的值域即可,对于②,要分别考虑函数的值域和图象性质,对于③,则需从函数图象入手,寻找符合条件的直线,对于④,考虑幂函数的图象和性质,才可做出正确判断
【解析】
【解析】
对于①,当x∈[1,+∞)时,0<≤1,故在[1,+∞)有一个宽度为1的通道,两条直线可取y=0,y=1;
对于②,当x∈[1,+∞)时,-1≤sinx≤1,故在[1,+∞)不存在一个宽度为1的通道;
对于③,当x∈[1,+∞)时,表示双曲线x2-y2=1在第一象限的部分,双曲线的渐近线为y=x,故可取另一直线为y=x-2,满足在[1,+∞)有一个宽度为1的通道;
对于④,当x∈[1,+∞)时,f(x)∈[2,+∞),故在[1,+∞)不存在一个宽度为1的通道;
故答案为:①③