某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
| 满意 | 一般 | 不满意 |
A套餐 | 50% | 25% | 25% |
B套餐 | 80% | | 20% |
C套餐 | 50% | 50% | |
D套餐 | 40% | 20% | 40% |
(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.
考点分析:
相关试题推荐
如图,一张平行四边形的硬纸片ABC
D中,AD=BD=1,
.沿它的对角线BD把△BDC
折起,使点C
到达平面ABC
D外点C的位置.
(Ⅰ)△BDC
折起的过程中,判断平面ABC
D与平面CBC
的位置关系,并给出证明;
(Ⅱ)当△ABC为等腰三角形,求此时二面角A-BD-C的大小.
查看答案
汶川震后在社会各界的支持和帮助下,汶川一中临时搭建了学校,学校餐厅也做到了保证每天供应1000名学生用餐,每星期一有A、B两样菜可供选择(每个学生都将从二者中选一),为了让学生们能够安心上课对学生的用餐情况进行了调查.调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B,而选B菜的,下周星期一则有30%改选A,若用A
n、B
n分别表示在第n个星期一选A、B菜的人数.
(1)试以A
n表示A
n+1;
(2)若A
1=200,求{A
n}的通项公式;
(3)问第n个星期一时,选A与选B的人数相等?
查看答案
已知向量m=(
,
),n=(
,
),记f(x)=m•n;
(1)若f(x)=1,求
的值;
(2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函
数f(A)的取值范围.
查看答案
定义:S为R的真子集,∀x,y∈S,若x+y∈S,x-y∈S,则称S对加减法封闭.有以下四个命题,请判断真假:
①自然数集对加减法封闭;
②有理数集对加减法封闭;
③若有理数集对加减法封闭,则无理数集也对加减法封闭;
④若S
1,S
2为R的两个真子集,且对加减法封闭,则必存在c∈R,使得c∉S
1∪S
2;
四个命题中为“真”的是
.(填写序号)
查看答案
省农科所经过5年对甲、乙两棉种的实验研究,将连续5年棉花产量(千克/亩)的统计数据用茎叶图表示如图,则平均产量较高与产量较稳定的分别是
.
查看答案