满分5 > 高中数学试题 >

已知函数f(x)=lnx,g(x)=ex. ( I)若函数φ(x)=f(x)-,...

已知函数f(x)=lnx,g(x)=ex
( I)若函数φ(x)=f(x)-manfen5.com 满分网,求函数φ(x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x,f (x))处的切线.证明:在区间(1,+∞)上存在唯一的x,使得直线l与曲线y=g(x)相切.
(Ⅰ)求导函数,确定导数恒大于0,从而可得求函数φ (x)的单调区间; (Ⅱ)先求直线l为函数的图象上一点A(x,f (x))处的切线方程,再设直线l与曲线y=g(x)相切于点,进而可得,再证明在区间(1,+∞)上x存在且唯一即可. (Ⅰ)【解析】 =,.(2分) ∵x>0且x≠1,∴φ'(x)>0 ∴函数φ(x)的单调递增区间为(0,1)和(1,+∞).(4分) (Ⅱ)证明:∵,∴, ∴切线l的方程为, 即,①(6分) 设直线l与曲线y=g(x)相切于点, ∵g'(x)=ex,∴,∴x1=-lnx.(8分) ∴直线l也为, 即,②(9分) 由①②得 , ∴.(11分) 下证:在区间(1,+∞)上x存在且唯一. 由(Ⅰ)可知,φ(x)=在区间(1,+∞)上递增. 又,,(13分) 结合零点存在性定理,说明方程φ(x)=0必在区间(e,e2)上有唯一的根,这个根就是所求的唯一x. 故结论成立.
复制答案
考点分析:
相关试题推荐
在直角坐标系xOy中,椭圆manfen5.com 满分网的左、右焦点分别为F1,F2.其中F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)若过点D(4,0)的直线l与C1交于不同的两点E,F.E在DF之间,试求△ODE 与△ODF面积之比的取值范围.(O为坐标原点)
查看答案
如图,棱柱ABCD-A1B1C1D1的所有棱长都为2,AC∩BD=O,则棱AA1与底面ABCD所成的角为60°,A1O⊥平面ABCD,F为DC1的中点.
(1)证明:BD⊥AA1
(2)证明:OF∥平面BCC1B1
(3)求二面角D-AA1-C的余弦值.

manfen5.com 满分网 查看答案
某学院为了调查本校学生2011年9月“健康上网”(健康上网是指每天上网不超过两小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得数据分成以下六组:[O,5],(5,1O],…,(25,30],由此画出样本的频率分布直方图,如图所示.
(I)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;
(Ⅱ)现从这40名学生中任取2名,设Y为取出的2名学生中健康上网天数超过20天的人数,求Y的分布列及其数学期望E(Y).

manfen5.com 满分网 查看答案
已知等比数列{an}的公比大于1,Sn是数列{an}的前n项和,S3=39,且a1manfen5.com 满分网manfen5.com 满分网依次成等差数列.
(Ⅰ)求数列{an}的通项公式;
(II)若数列{bn}满足:b1=3,bn=anmanfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网)(n≥2),求数列{bn}的前n项和Tn
查看答案
在△ABC中,若manfen5.com 满分网,则∠C=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.